Outline

Ingegneria Sismica

Ingegneria Sismica

EXPERIMENTAL RESEARCH ON IMPROVEMENT OF THE DUCTILITY OF R/C SEISMIC WALLS THROUGH SLIP PREVENTION WITH THE USE OF STEEL RHS

, Theodoros Chrysanidis., , Ioannis Tegos., and , Nikolaos Alamanis. “EXPERIMENTAL RESEARCH ON IMPROVEMENT OF THE DUCTILITY OF R/C SEISMIC WALLS THROUGH SLIP PREVENTION WITH THE USE OF STEEL RHS.” Ingegneria Sismica Volume 39 Issue 1: -, doi:….

Abstract

Several researchers propose placing diagonal reinforcing bars at the base of the wall to treat the shear slip, while others have suggested various ways to address this problem associated with halting the effects incurred by the through-crack in the base of the wall during cyclic loading. An indicative proposal of the bibliography is the use of large diameter reinforcement bars in the web of the wall as vertical reinforcements, so as to be able to better control the shear action through the dowel action of these bars. The two aforementioned proposals, while adequately addressing the phenomenon of shear slip, present significant disadvantages. The use of diagonal reinforcement is very difficult to construct, because of the density of the existing reinforcement in the base of the walls, which involves compromising good concrete condensation. Also, the use of large diameter vertical reinforcement along the length of the whole wall section, including its web, is a strongly uneconomical solution. This work examines a solution without the aforementioned side-effects. The innovation of the present work is the fact that it positions stoppers in combination with the use of conventional reinforcing bars at positions in the critical zones of the walls, in order to prevent the expected slip along the through-crack in the base of the rigidly supported wall. The work is experimental and includes two stages. The first stage was carried out with the construction of six test specimens, which can be considered as preliminary base specimens used for a first examination of the mechanical behavior of the walls with integrated steel hollow beams at their ends. These test results are a prelude to the second stage of the present study, including the experimental investigation of the seismic mechanical properties of a wall specimen, detailed either with conventional reinforcement according to EC8 or with the same conventional reinforcement but including also steel hollow beams at its confined edges.

Related Articles

E. Brunesi1, S. Peloso1, R. Pinho1,2, R. Nascimbene3
1EUCENTRE, European Centre for Training and Research in Earthquake Engineering Via Ferrata 1, 27100 Pavia, Italy
2Dept. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy
3Scuola Universitaria Superiore IUSS Pavia Piazza della Vittoria 15, 27100 Pavia, Italy
R. Arvind1, M. Helen Santhi1, G. Malathi2, Huseyin Bilgin3
1School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Civil (Structural) Engineering, Epoka University, Tirana / Albania
Ali Ekber Sever1, Yakup Hakan Aydin2, Pinar Usta Evci1
1Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
2Department of Mechanical Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
Hayri Baytan Ozmen1, Esra Ozer2
1Department of Civil Engineering, Usak University, 64200 Usak, Turkey
2Department of Civil Engineering, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey
Hamid Beiraghi1, Abolfazl Riahi Nouri2
1Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
2Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran