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SUMMARY: Affected by the multi-dimensionality and randomness of earthquake motion, as
well as structural asymmetry, beam-column joints are frequently subjected to complex dynamic
loads with variable strain rates and axial forces. In order to investigate the dynamic perfor-
mance of beam-column joint under such condition, a restoring force model for beam-column
joint is established through the force equilibrium condition, the strip integration, the parametric
analysis, and the mean value theorem. Research shows that the proposed restoring force model
can effectively predict the dynamic performance of beam-column joint. The yielding carrying
capacity, the ultimate carrying capacity, and the secant stiffness of beam-column joint increase
as strain rate increases. Among which, the secant stiffness can be increased by 22.9%. How-
ever, the extent of increased ultimate carrying capacity is more obvious than that of increased
yielding carrying capacity. Within a certain range of strain rate level, the cumulative energy
dissipation and the equivalent viscous damping of beam-column joint are increased with the in-
creasing strain rate. Specifically, the cumulative energy dissipation and the equivalent viscous
damping can be increased by 33.34% and 22.73%, respectively. In addition, the displacement
ductility coefficient decreases with the increasing strain rate. Compared with that under fixed
axial force, there is no significant difference in the dynamic performance of beam-column joint
under variable axial force. The hysteresis behavior of beam-column joint remains almost un-
changed, except for displacement ductility. The displacement ductility coefficient is slightly
reduced. From the above, it can be seen from that the proposed restoring force model can
comprehensively evaluate the dynamic performance of beam-column joint.

KEYWORDS: beam-column joint, strain rate, axial force, restoring force model, dynamic per-
formance

1 Introduction
Under dynamic loading conditions, such as earthquakes or impacts, reinforced concrete struc-
tures exhibit mechanical behaviors that differ fundamentally from those observed under static
loading during the service life. This discrepancy primarily stems from the multidimensional and
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random characteristics of dynamic loads, together with structural asymmetry, which collectively
subject structural members to complex loading histories involving varying strain rates and axial
forces. Extensive studies have demonstrated that strain rate effects play a critical role in govern-
ing the mechanical performance of reinforced concrete members [1]. Specifically, increasing
strain rates have been shown to enhance the carrying capacity, stiffness, and energy dissipation
capacity of beams [2], while simultaneously reducing their deformation capacity [3]. At suf-
ficiently high strain rates, the failure mode of beams may shift from ductile flexural failure to
brittle shear failure [4]. For columns, elevated strain rates tend to intensify stiffness degradation
[5], whereas in shear walls, higher strain rates generally improve both carrying capacity and
energy dissipation capacity [6]. Axial force is another important factor influencing the mechan-
ical behavior of reinforced concrete members [7]. An increase in axial force typically leads to
a significant reduction in ductility [8, 9], while simultaneously enhancing the carrying capac-
ity of beam-column joints [10]. Moreover, under elastic–plastic deformation, fluctuating axial
forces can further accelerate the degradation of strength and stiffness in such joints [11]. Al-
though the individual effects of strain rate and axial force on reinforced concrete members have
been widely investigated, most existing studies have primarily focused on quasi-static behavior,
with limited attention paid to dynamic performance. In addition, the coupled effects of vary-
ing strain rates and axial forces have not yet been systematically examined. Current research
largely concentrates on the dynamic response of isolated structural members, such as beams,
columns, or shear walls, under simplified loading conditions. Consequently, the dynamic per-
formance of beam-column joints subjected to complex loading scenarios remains insufficiently
understood. Therefore, a comprehensive investigation of the mechanical performance of beam-
column joints under combined varying strain rates and axial forces is of significant importance.
Such research is essential for achieving accurate performance evaluation and for improving the
design and assessment of reinforced concrete structures subjected to seismic and other dynamic
actions.

Experimental investigation remains extensively utilized for analyzing the mechanical per-
formance of structural members. While accurate results are achievable through experimental
methods, these methods frequently entail time-consuming, costly, and challenging to control
test conditions. Consequently, a theoretical approach is adopted to investigate the effects of
varying strain rates and axial forces on the mechanical performance of beam-column joint. The
analysis is grounded in the restoring force model, which serves as a fundamental basis for
the theoretical investigation of structural member performance under cyclic loading [12]. This
model effectively captures key mechanical responses, such as strength degradation, stiffness
degradation, and pinching effects [13], offering a robust framework for simulating complex
dynamic behaviors without the practical constraints inherent in physical testing.

Among diverse restoring force models, curvilinear types demonstrate high accuracy but are
characterized by structural complexity that hinders practical application. Consequently, poly-
line models are more widely adopted in engineering due to their computational efficiency and
adequate accuracy [14, 15]. Therefore, considerable research has been dedicated to developing
polyline models for predicting the mechanical behavior evolution of beam-column joint. For
instance, Yu et al. [16] proposed a flat-topped trilinear model derived through theoretical anal-
ysis, which effectively characterized the load-displacement relationship across various loading
stages. Nevertheless, the descending branch of the skeleton curve, limiting its accuracy beyond
the ultimate load, and assumes a symmetric skeleton curve is neglected in this model, whereas
actual member responses frequently exhibit asymmetry [17]. To overcome these limitations, Yu
et al. [18] established an asymmetric trilinear model calibrated with experimental data, incor-
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porating an ultimate strength point to represent the descending branch and thereby improving
predictive accuracy. However, this model was developed confined to quasi-static loading and
a fixed axial force, neglecting the effects of varying strain rates or axial forces, which were
critical factors influencing the mechanical behaviors [19]. Following a similar methodology,
Pang et al. [20] developed an asymmetric trilinear model via regression analysis. Although
external strengthening effects were considered, the influences of varying strain rates and axial
forces were overlooked. For further refinement, Xue et al. [21] proposed a quadrilinear model
that includes a cracking point and employs normalized parameters, considering the stiffness-
improving contribution of the slab. Although this model more accurately simulates the actual
loading process compared to trilinear formulations, it similarly neglects varying strain rates
and axial forces, while failing to adequately represent pinching behavior in hysteretic curves.
To address this specific issue, Zhuang et al. [22] defined multiple inflection and compression
points into a quadrilinear model, generating hysteretic curves that align better with experimen-
tal observations. However, this model also fails to incorporate the effects of varying strain rates
and axial forces. Despite the abundance of restoring force models, an appropriate asymmetric
model remains lacking for analyzing beam-column joint mechanical properties under complex
dynamic loads characterized by coupled variations in strain rates and axial forces.

In summary, to overcome the lack of an appropriate restoring force model for beam-column
joints subjected to dynamic loading, this study proposes an asymmetric rate-dependent restor-
ing force model that explicitly incorporates the coupled effects of varying strain rates and axial
forces. Based on the plane-section assumption and the principle of energy equivalence, the
model is formulated through strip integration combined with parametric analysis and the mean
value theorem. The proposed model is subsequently implemented within a finite element frame-
work to evaluate and predict the dynamic performance of beam-column joints under combined
variations in strain rates and axial forces.

2 Establishment of restoring force model

2.1 Characteristics of beam-column joint
In reinforced concrete frame structures, a beam-column joint is inherently a three-dimensional
structural component subjected to complex stress states. To facilitate force analysis and model
formulation, the restraining effect of the floor slab is neglected in this study. The beam end
and column end are defined as the segments extending from the corresponding inflection points
to the joint interface, thereby transforming the spatially complex joint region into an equiva-
lent two-dimensional member within a planar frame system. Based on this simplification, the
boundary conditions and force state of the beam-column joint subjected to beam-end loading
can be clearly defined. The corresponding mechanical model and force analysis of the simpli-
fied joint are illustrated in Figure 1.

2.2 Characteristics of skeleton curve
Based on the loading configuration illustrated in Figure 1, the beam-end region is selected as
the analytical subject. The loading process at the beam end can be divided into four typical
stages: (a) Elastic stage: In this stage, the member stiffness remains constant, and the applied
load increases linearly with displacement. This stage terminates at the cracking point, which
corresponds to the initiation of concrete cracking and the loss of tensile capacity in the concrete.
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(b) Elastic-plastic stage: During this stage, the load continues to increase with displacement,
but at a reduced rate compared with the elastic stage, resulting in a gradual degradation of
stiffness. This stage ends at the yielding point, indicating the onset of reinforcement yield-
ing. (c) Plastic stage: In this stage, the stiffness further decreases relative to the elastic-plastic
stage. The load continues to increase until reaching the peak strength point, which signifies that
the member has attained its maximum carrying capacity. (d) Failure stage: Beyond the peak
strength point, the load begins to decrease while deformation continues to increase until struc-
tural failure occurs. This stage concludes at the ultimate strength point. Based on the complete
force-deformation characteristics of the beam-column joint, a quadrilinear skeleton curve is es-
tablished. The skeleton curve is defined by four characteristic points corresponding to cracking,
yielding, peak strength, and ultimate strength, as illustrated in Figure 2.

Figure 1: Loading schematic diagram of beam-column joint

Figure 2: Quadrilinear skeleton curve

2.3 Theoretical calculation method of skeleton curve

2.3.1 Calculation method for characteristic point load

The derivation of load expressions at the characteristic points requires appropriate constitutive
models for both reinforcement and concrete. In reinforced concrete members, stirrups are com-
monly used to enhance structural integrity, as well as to improve the ductility and compressive
strength of the core concrete. Therefore, the modified Kent-Park model is adopted in this study
as the constitutive model for concrete, since it explicitly accounts for the confinement effect
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provided by stirrups. The modified Kent-Park model incorporates key parameters related to the
strength enhancement of confined concrete, enabling a more realistic representation of concrete
behavior under complex loading conditions. By considering the influence of stirrup confine-
ment, this model is well suited for analyzing the mechanical response of beam-column joints
subjected to dynamic loading. The constitutive relationship of the modified Kent-Park model is
illustrated in Figure 3, and its mathematical expression [23] is given as follows:

K = 1+
ρs fyh

f ′c
, (1)

Zm =
0.5

(3+0.29 f ′c)
/
(145 f ′c −1000)+0.75ρs

√
h′′
sh
−0.002K

, (2)

σc =


K f ′c

[
2εc

0.002K
−
(

εc

0.002K

)2
]
, 0 ≤ εc ≤ 0.002K,

K f ′c [1−Zm(εc −0.002K)] , 0.002K < εc ≤ εcu,

0.2K f ′c, εc > εcu,

(3)

where σc is the compressive stress of concrete; εc is the compressive strain of concrete; f ′c is the
cylinder compressive strength of concrete, taken as 79% of the cubic compressive strength; K
is the strength enhancement factor of confined concrete; Zm is the slope of the strain-softening
branch; εcu is the ultimate compressive strain of concrete; ρs is the volumetric ratio of stirrup;
fyh is the yield strength of stirrup; h′′ is the concrete core width (core area width); and Sh is the
spacing of stirrups.

Figure 3: Concrete constitutive model

Under dynamic loading conditions, increasing strain rates shorten the yield plateau of re-
inforcement compared with static loading. In addition, the strain-hardening behavior of rein-
forcement after yielding plays an important role in governing the mechanical performance of
structural members. Therefore, the constitutive model adopted for reinforcement should be ca-
pable of accurately describing its post-yield response. In this study, a trilinear elastic-plastic
constitutive model with linear hardening is adopted for the reinforcement. This model intro-
duces an ascending branch beyond the yield plateau, enabling an effective representation of
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the evolution of mechanical behavior after yielding, while maintaining simplicity and compu-
tational efficiency. The constitutive relationship of the reinforcement is illustrated in Figure 4,
and the corresponding expression [24] is given as follows:

σs =


Es εs, εs ≤ εy,

fy, εy < εs ≤ εy2,

fy + k
(
εs − εy2

)
, εs > εy2,

(4)

where Es is the elastic modulus of the reinforcement; fy is the yield strength of the reinforce-
ment; k is the strain-hardening ratio and is taken as 0.01Es; εs is the strain of the reinforcement;
εy is the yield strain of the reinforcement; εy2 is the strain at the onset of the strengthening stage;
εu is the ultimate strain of the reinforcement; fu is the ultimate strength of the reinforcement.

Figure 4: Reinforcement constitutive model

As illustrated in Figure 5, based on the constitutive models for reinforcement and concrete
described above, the load expression at the cracking point is derived using strip integration.

The ultimate tensile strain of concrete εtu is expressed as:

εtu =
ft

0.5Ec
, (5)

where ft is the tensile strength of concrete, and Ec is the elastic modulus of concrete.
The cracking curvature φcr is expressed as:

φcr =
εtu

h− xcr
, (6)

where h is the section depth, and xcr is the depth of compression zone at cracking.
The compressive strain εci of concrete strip is expressed as:

εci = φcr · yi =
εtu

h− xcr
· yi, (7)

where yi is the distance from the concrete strip to neutral axis.
Based on the above definitions, the following equilibrium equations are obtained from static

equilibrium.

(xcr −a′s) ·φcr ·Es ·A′
s +

∫ xcr

0
b ·σc(εci)dy = (h− xcr −as) ·φcr ·Es ·As + ft ·b · (h− xcr), (8)
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Mcr =
∫ xcr

0
b ·σc(εci)

(
yi +

h− xcr

2

)
dy+(xcr −a′s) ·φcr ·Es ·A′

s

(
xcr −a′s +

h− xcr

2

)
+(h− xcr −as) ·φcr ·Es ·As

(
h− xcr

2
−as

)
, (9)

where As and A′
s are the cross-sectional area of tensile and compressive reinforcement, respec-

tively; σc(εci) is the stress of concrete strip determined from the constitutive model; b is the
section width; a′s and as are the effective depth to the tensile and compressive reinforcement,
respectively.

After solving the equilibrium equations for the cracking moment Mcr, the corresponding
cracking load Pcr is calculated as:

Pcr =
Mcr

Lb
, (10)

where Lb is the beam-end length.

Figure 5: Strain and stress distribution across section at member cracking

Following the same procedure used to determine the cracking load Pcr, the yielding load Py
and the peak load Pm are subsequently determined. The yield strain εy of tensile reinforcement
is expressed as:

εy =
fy

Es
. (11)

The yield curvature φy is expressed as:

φy =
εy

h− xy −as
, (12)

where xy is the depth of compression zone at reinforcement yielding.
The compressive strain εci of concrete strip is expressed as:

εci = φy · yi =
εy

h− xy −as
· yi. (13)

The corresponding equilibrium equations for determining the yielding load are given as
follows:

Es ·φy · (xy −a′s) ·A′
s +

∫ xy

0
b ·σc(εci)dy = fy ·As, (14)

My = Es ·A′
s ·φy · (xy −a′s) · (h−as −a′s)+

∫ xy

0
b ·σc(εci) · (yi +h− xy −as)dy. (15)
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After obtaining the yielding moment My from the simultaneous equilibrium equations, the
yielding load Py can be calculated as:

Py =
My

Lb
. (16)

When the concrete strain reaches its peak value, the peak curvature φm is expressed as:

φm =
ε0

xm
, (17)

where xm is the depth of compression zone at peaking load, and ε0 is the peak strain of concrete,
taken as 0.002.

The compressive strain εci of the concrete strip is expressed as:

εci = φm · yi =
ε0

xm
· yi, (18)

The corresponding equilibrium equations are expressed as:

Es ·φm · (xm −a′s) ·A′
s +

∫ xm

0
b ·σc(εci)dy = fu ·As, (19)

Mm = Es ·A′
s ·φm · (xm −a′s) · (h−as −a′s)+

∫ xm

0
b ·σc(εci) · (yi +h− xm −as)dy. (20)

After obtaining the peaking moment Mm from the simultaneous equilibrium equations, the
peaking load Pm can be calculated as:

Pm =
Mm

Lb
. (21)

The ultimate load Pu is defined as 0.85 times the peaking load Pm:

Pu = 0.85Pm. (22)

2.4 Calculation method for characteristic point displacement
During the loading process of a beam-column joint, the member remains in an elastic or elastic–
plastic state until reinforcement yielding occurs. Within this stage, variations in stiffness are
relatively small and can be neglected. Therefore, based on the plastic hinge theory and con-
sidering the contributions of various deformation components to the overall displacement, the
beam-end displacement before reinforcement yielding can be calculated as:

∆b =
φ

3
(Lb +0.022 fy db)

2

[
1+

(
h
Lb

)2
]
, φ ≤ φy, (23)

where φ is the sectional curvature, which is determined based on the beam-end displacement;
db is the diameter of longitudinal reinforcement.

After the reinforcement at the beam-end section corresponding to the maximum bending
moment yields, the yielded region gradually expands with increasing external load, eventu-
ally leading to the formation of a plastic hinge zone. Within this zone, the sectional curvature
increases rapidly, resulting in significant rotational deformation at the beam end and a corre-
sponding increase in displacement. Consequently, the influence of the plastic hinge must be
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considered in the beam-end displacement ∆p after reinforcement yielding. In this stage, the
total displacement consists of both elastic and plastic components, as illustrated in Figure 6.

Figure 6: Schematic diagram of beam-end displacement after reinforcement yielding.

According to the established method for evaluating plastic displacement, the plastic compo-
nent is primarily governed by the length of the plastic hinge zone. To incorporate the influence
of varying axial force into the restoring force model, based on a commonly adopted empirical
expression, the formula for calculating the length of the plastic hinge zone lp, while considering
the influence of the axial compression ratio, is expressed as follows:

lp = 2(h−as)

[
1−

0.5(µs fyt −µsc fyc +N1/bh)
fc

]
, (24)

where µst and µsc are the tensile and compressive reinforcement ratios, respectively; fyt and fyc
are the yield strengths of the tensile and compressive reinforcement; N1 is the axial force; fc is
the compressive strength of concrete.

The plastic displacement ∆p of the beam-end is expressed as:

∆p = (φ −φy) · lp ·
(

Lb −
1
2

lp

)
, φ ≥ φy. (25)

The elastic displacement ∆e is calculated using the same method as for the displacement ∆b
before reinforcement yielding. The total beam-end displacement ∆a after reinforcement yields
is expressed as:

∆a = ∆e +∆p =
φy

3
(Lb +0.022 fy db)

2

[
1+

(
h
Lb

)2
]
+(φ −φy) · lp ·

(
Lb −

1
2

lp

)
, φ ≥ φy.

(26)
Based on the above expressions, the displacements corresponding to the characteristic points

on the skeleton curve can be obtained by substituting the section curvatures derived previously.

2.5 Influence of varying strain rate on the restoring force model
Both reinforcement and concrete are strain rate–sensitive materials, and their mechanical prop-
erties exhibit pronounced differences under dynamic and static loading conditions. Therefore,
the strain rate effect must be explicitly considered in the development of the restoring force
model. In this study, the influence of strain rate is incorporated through the dynamic increase
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factor (DIF), which is commonly used to quantify variations in material properties under dy-
namic loading. By introducing DIF, key mechanical parameters are modified relative to their
corresponding static values. The formula is as follows:

fd = DIF · fs, (27)

where fd and fs are the dynamic and static material strengths, respectively.
The Comité Euro-International du Béton (CEB) provides empirical DIF formulations that

relate the dynamic material properties to their static counterparts [30]. For the tensile strength
ft of concrete under dynamic load, the DIF ft formula is expressed as:

DIF ft =
ftd
fts

=

(
ε̇

ε̇0

)1.016δ

, (28)

where ftd is the dynamic tensile strength of concrete; fts is the static tensile strength of concrete;
ε̇ is the strain rate; ε̇0 is a constant taken as 30×10−6 s−1; fcs is the static compressive strength
of concrete; f0 is a constant equal to 10MPa; and

δ =
1

10+6( fcs/ f0)
.

For the compressive strength fc of concrete under dynamic loading, the DIF fc formula is
expressed as:

DIF fc =
fcd

fcs
=

(
ε̇

ε̇0

)1.026α

, (29)

where fcd is the dynamic compressive strength of concrete, and

α =
1

5+9( fcs/ f0)
.

For the yield strength fy of reinforcement under dynamic load, the DIF fy formula is ex-
pressed as:

DIF fy =
fyd

fys
= 1+

6
fys

ln
(

ε̇

ε̇0.3

)
, (30)

where fyd is the dynamic yield strength of reinforcement; fys is the static yield strength of
reinforcement; and ε̇0.3 is a constant equal to 5×10−5 s−1.

For the ultimate strength fu of reinforcement under dynamic load, the DIF fu formula is
expressed as:

DIF fu =
fud

fus
= 1+

6
fus

ln
(

ε̇

ε̇0.3

)
, (31)

where fud is the dynamic ultimate strength of reinforcement; fus is the static ultimate strength
of reinforcement. The effect of strain rate on the elastic modulus of reinforcement and concrete
is negligible [30] and is therefore not considered in this model.

The calculation of the DIF for reinforcement and concrete requires the definition of a repre-
sentative strain rate. According to Reference [29], although the strain rate under dynamic load-
ing varies continuously, significant changes in mechanical performance generally occur only
when the strain rate increases by one order of magnitude or more. To account for this character-
istic, the strain rate is defined in two distinct stages: an elastic strain rate prior to reinforcement

27



Fan et al.

yielding, and a plastic strain rate after reinforcement yielding. This staged definition enables
a more realistic characterization of strain rate evolution and thereby improves the predictive
accuracy of the restoring force model.

Before reinforcement yielding, the member remains predominantly in an elastic stage, dur-
ing which the strain rate can be regarded as approximately constant. This elastic strain rate
ε̇1 can be obtained using the theoretical formula derived from its physical significance. It is
expressed as:

ε̇1 =
ε1

T1
, (32)

where V is the loading speed; PSD1 is the yield displacement ∆y; ε1 is the yield strain εy of the
reinforcement; and

T1 =
PSD1

V
.

After reinforcement yielding, a plastic hinge forms at the beam end, resulting in a pro-
nounced difference in strain rate distribution between the plastic hinge zone and the non-plastic
hinge zone. In the non-plastic hinge region, the strain rate remains relatively stable and is com-
parable to that before yielding. In contrast, within the plastic hinge zone, the strain rate varies
continuously due to the development of plastic deformation. Owing to the non-uniformity and
uncertainty of the strain rate in the plastic hinge zone, the strain rate calculated directly from
the theoretical expression tends to be significantly higher than the actual value during this stage.
To improve the accuracy of the plastic strain rate, a reduction factor ω is introduced. Based on
the physical definition of strain rate, ω is derived from the relationship between reinforcement
strain and beam-end length. First, the actual strain–length variation curve is simplified into a
nominal curve using the equivalent area method, as illustrated in Figure 7. Subsequently, ac-
cording to the principle of energy equivalence, the ratio of the area enclosed by the nominal
curve to that of the actual curve is calculated and defined as the reduction factor ω .

Figure 7: Reinforcement strain–beam-end length curve

The area enclosed by the strain–length curve represents the length variation. Accordingly,
the nominal length increment ∆l of the beam can be expressed as:

∆l =
1
2

εy (Lb − lp)+
(εmax + εy1) lp

2
, (33)

where εy1 is the nominal yield strain of reinforcement; εmax is the maximum reinforcement
strain,

εmax = 0.0033
(h−as − xu)

xu
,

and xu is the depth of compression zone at ultimate load.
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Based on geometrical analysis, the actual length variation ∆l′ of the beam is calculated
from deformation components, including displacement variation and beam-end rotation angle,
as illustrated in Figure 8. The first variation length l1 is expressed as:

l1 =

√
1
4

l2
p +∆2

1, (34)

where θy is the yield rotation angle, θy = ∆y/Lb, and ∆1 =
1
2 lp θy.

The second variation length l2 is expressed as:

l2 =

√(
Lb −

1
2

lp

)2

+∆2
2 (35)

where θp is the plastic rotation angle,

θp = lp(φu −φy), ∆p1 = θp

[
Lb −

1
2

lp

]
, ∆2 = ∆1 +∆p1 −∆1.

The actual length increment ∆l′ of the beam is expressed as:

∆l′ = l1 + l2 −Lb. (36)

The strain-rate reduction factor ω (ω < 1) is expressed as:

ω =
∆l
∆l′

. (37)

The plastic stage strain rate ε̇2 is expressed as:

ε̇2 = ε̇1 ·ω =
ε1

T1
·ω. (38)

Figure 8: Schematic diagram of deformation at the beam-end

2.6 Influence of varying axial force on the restoring force model
Under dynamic loading, the axial force acting on a beam-column joint varies continuously due
to the combined effects of overturning moment and vertical vibration. Previous studies have
shown that varying axial force significantly influences mechanical performance indicators such
as strength, stiffness, and energy dissipation capacity. Therefore, the effect of varying axial
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force must be incorporated into the restoring force model. Based on the principle of energy
equivalence, the varying axial force is transformed into an equivalent fixed axial force using the
mean value theorem. This equivalent fixed axial force N′ is then used in the expressions for the
characteristic points of the skeleton curve. The equivalent axial force N′ is expressed as:

N′ =

∫ T

0
N(t)dt

T
, (39)

where T is the loading time; N(t) is the time-varying axial force function, determined by the
loading protocol, as shown in Figure 9.

Figure 9: Schematic diagram of varying axial force loading

2.7 Influence of asymmetry on the restoring force model
Structural members inevitably exhibit asymmetric hysteretic behavior under dynamic loading.
This asymmetry primarily arises from factors such as concrete cracking, bond–slip between re-
inforcement and concrete, and asymmetric reinforcement layout. As a consequence, hysteretic
curves derived from symmetric skeleton curves may deviate significantly from the actual struc-
tural response. To address this limitation, asymmetry is explicitly incorporated into the skeleton
curve when establishing the restoring force model.

Reference [32] proposed an asymmetric BWBN model that incorporated a control param-
eter δ to adjust both the magnitude and direction of the offset of the skeleton curve, thereby
effectively capturing asymmetric behavior. Following this approach, the characteristic point
parameters are calibrated to account for asymmetry based on the original skeleton curve. The
relationship between load and displacement is expressed as follows:

R(u,z) = αk0u+(1−α)k0z, (40)

where R(u,z) is the load at the characteristic point; k0 is the initial elastic stiffness; α is the
post-yield stiffness ratio; u is the displacement at the characteristic point; and z is the nonlinear
hysteretic displacement.

The maximum nonlinear hysteretic displacement zmax is expressed as:

zmax = [−(1+δvw)(β + γ ±2δ )]−1/n , (41)
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where β , γ , and n are shape control parameters; δ is the asymmetric control parameter; δv is the
strength degradation parameter;

w =
∫

∆u

0
P(∆)d∆,

P(∆) is the skeleton curve function; and ∆u is the ultimate displacement.
The control parameters are selected according to the data listed in Table 1. Subsequently,

the maximum nonlinear hysteretic displacement zmax is calculated using Eq. (41). The modified
positive and negative peak loads Pm can be produced by substituting this value into Eq. (40).
Thereafter, the loads and displacements at the remaining characteristic points are determined
through stiffness-based relationships. This procedure ultimately enables the construction of the
asymmetric skeleton curve.

Table 1: Parameters of the asymmetric BWBN model

Parameter Physical meaning Parameter distribution range
α Post-yield stiffness ratio [0,1.0]
β Loading and unloading shape parameters [0.5,1.5]
γ Loading and unloading shape parameters [−0.3,0.5]
n The yield sharpness shape parameter [0,5]
δv Strength degradation parameters [0,0.05]
δ Asymmetric control parameters [−0.1,0.1]

2.8 Establishment of hysteretic rule

2.8.1 Unloading stiffness

Under cyclic loading, the unloading stiffness of the member is approximately equal to the elas-
tic stiffness prior to the cracking point. After cracking occurs, however, plastic deformation
progressively develops under the combined influence of varying strain rates and axial forces,
resulting in a pronounced degradation of unloading stiffness. Therefore, it is necessary to es-
tablish an unloading stiffness expression that explicitly accounts for these effects. Based on the
relevant research reported in [19], the original unloading stiffness formula is used as a founda-
tion and a multiple regression analysis is conducted on existing test data. Parameters a and c
related to varying strain rates and axial forces are incorporated to obtain the expression for the
unloading stiffness K after the cracking point:

K
K0

= a · c∆/∆i, (42)

a = 0.179 lg
(

ε̇

ε̇0.5

)
+0.105 lg(1+ n̄)+1.301, (43)

c = 0.222 lg
(

ε̇

ε̇0.5

)
−0.317 lg(1+ n̄)+0.378, (44)

where K0 is the elastic stiffness; ∆ is the member displacement; ∆i is the displacement ampli-
tude of the i-th loading grade, defined by the loading protocol; n̄ is the rate of change in axial
compression ratio; and ε̇0.5 is a reference strain rate, taken as 10−5 s−1.
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2.8.2 Reloading stiffness

The variation trend of reloading stiffness at different loading stages is generally consistent with
that of unloading stiffness. Nevertheless, the influence of varying strain rates and axial forces
on the reloading stiffness is relatively small and can be neglected for the sake of computational
simplicity. Therefore, the reloading stiffness K′ after the cracking point is calculated using the
original model expression.

K′

K
= 0.231

(
∆

∆i

)−0.979

. (45)

2.8.3 Damage index

Under cyclic loading, once the member reaches the yielding point, the hysteretic response ex-
hibits pronounced pinching behavior. This phenomenon is mainly attributed to plastic defor-
mation, bond–slip between reinforcement and concrete, as well as the opening and closing of
cracks. With increasing displacement and load amplitude, especially beyond the peak load, the
pinching effect becomes increasingly significant. Furthermore, an examination of hysteretic
curves reported [19] indicates that pinching in beam–column joints under dynamic loading typ-
ically initiates near the cracking load. Thus, to accurately simulate this behavior, a damage
index D is incorporated into the loading and unloading stiffness expressions. The introduction
of this index induces a stiffness change at the cracking load and generates an inflection point in
the hysteretic path, thereby enabling an effective simulation of the pinching effect.

The Park–Ang damage model is widely employed to evaluate structural damage based on
cumulative energy dissipation, and thus provides a well-established experimental foundation for
calculating the damage index D [33]. However, the original model does not adequately distin-
guish failure characteristics under different displacement amplitudes and tends to underestimate
the contribution of large-amplitude cycles to the total energy dissipation. To more accurately
capture the evolution of loading and unloading stiffness under dynamic loading, the original
Park–Ang model is modified by introducing an effective energy dissipation factor em, which
redistributes the energy dissipation contribution among different displacement amplitudes. The
improved Park–Ang model is given by:

em =
∆y

∆m
log

(
∆u

∆y

)(
∆m

∆y

)
, (46)

D =
∆m

∆u
+ em · ∑Ei

Qy ∆u
, (47)

where ∆m is the peaking displacement;

∑Ei = w =
∫

∆u

0
P(∆)d∆,

Qy = Py/A; and A is the cross-sectional area.
Integrating the damage index D and the original loading and unloading stiffness expressions,

the unloading stiffness K1 at the inflection point is expressed as:

K1 = K · (1−D). (48)

The formula for reloading stiffness K′
1 at the inflection point is expressed as:

K′
1 = K′ · (1−D). (49)
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2.8.4 Hysteretic rule

An asymmetric rate-dependent restoring force model for beam-column joints under varying
strain rates and axial forces has been established. This model is developed based on the skeleton
curve and the degradation rules of loading and unloading stiffness, as illustrated in Figure 10.
In addition, the overall theoretical framework of the restoring force model is presented in Figure
11. The hysteretic behavior of the proposed model can be summarized as follows.

Figure 10: The asymmetric rate-dependent restoring force model of beam-column joint under
varying strain rates and axial forces.

Figure 11: Theoretical framework of the restoring force model.

1. During the cracking stage, both the positive and negative loading–unloading paths follow
the skeleton curve, corresponding to segments OA and OE in Figure 10. In this stage, the
unloading stiffness and reloading stiffness are equal to the initial elastic stiffness.
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2. When the applied load exceeds the cracking load Pcr and the member enters the yield
stage, spanning from the cracking point A to the yielding point B, the initial loading path
continues to follow the skeleton curve. However, the unloading path deviates from the
original loading path, as indicated by path 1 → 2. The unloading stiffness begins to de-
grade and is calculated using Eq. (42). After unloading to zero load, reverse reloading
initiates from the intersection of the unloading path with the coordinate axis. The reload-
ing path follows 2 → 3, with the reloading stiffness determined using Eq. (45). Upon
reloading to point 3, subsequent unloading and reloading proceed along paths 3 → 4 and
4 → 1, respectively, forming a closed hysteretic loop. The corresponding stiffness values
are consistently calculated using Eqs. (42) and (45). The complete hysteretic path in this
stage is 1 → 2 → 3 → 4 → 1.

3. When the applied load further exceeds the yielding point and the member enters the peak
stage, spanning from point B to point C, the unloading path is divided into two seg-
ments by an inflection point, as shown by path 5 → 6 → 7. The unloading stiffness is
calculated separately for each segment, with the cracking load serving as the division
criterion: Eq. (42) is applied for segment 5 → 6, while Eq. (48) is used for segment
6 → 7. During reverse reloading, the reloading path also consists of two segments di-
vided by an inflection point, following paths 7 → 8 and 8 → 9. The reloading stiff-
ness is evaluated separately for each segment, with Eq. (45) applied to segment 7 → 8
and Eq. (49) to segment 8 → 9. After reloading to point 10, subsequent unloading and
reloading follow paths 10 → 11 → 12 and 12 → 13 → 14, respectively, until a com-
plete hysteretic loop is formed. The stiffness values throughout this process are calcu-
lated using the corresponding equations. The complete hysteretic path in this stage is
5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 → 13 → 14.

4. When the applied load exceeds the peak load Pm and the member enters the ultimate
stage, spanning from point C to point D, the hysteretic path exhibits a pattern similar to
that observed in the peak stage, as shown in Figure 10.

3 Validation of restoring force model
To validate the proposed restoring force model, a total of 29 experimental datasets obtained from
beam-column joint tests [19, 34, 35] are utilized for comparison with model predictions. The
model performance is evaluated from multiple perspectives, including the skeleton curve, hys-
teretic behavior, displacement ductility factor, secant stiffness, cumulative energy dissipation,
and equivalent viscous damping coefficient. The key information of the selected beam-column
joint specimens is summarized in Table 2.

Incorporating the restoring force model proposed in section 3, a finite element model of the
beam–column joint is developed in OPENSEES to predict its dynamic mechanical performance.
In the numerical model, the “Concrete02” and “Steel02” material models are employed to rep-
resent the constitutive behavior of concrete and reinforcement, respectively. The joint shear
panel is depicted through four “RigidLink” commands (denoted as rbi, i = 1–4), which ensure
the rigid connection within the panel. The beam-end is connected to the shear panel via “Ze-
roLength” elements (ezi, i = 1,2), enabling precise simulation of the connection behavior. To
reproduce the hysteretic response of the beam–column joint, the “Pinching4” material model is
adopted. The parameters of this material are calibrated based on the proposed restoring force

34



INGEGNERIA SISMICA – INTERNATIONAL JOURNAL OF EARTHQUAKE ENGINEERING

model, including the characteristic points of the skeleton curve, the loading and unloading stiff-
ness, and the damage indices. The overall finite element model configuration is illustrated in
Figure 12.

Table 2: Beam-column joint specimens

Research team Specimen
Sectional dimension

b×h (mm)
Length
(mm)

Longitudinal
reinforcement ratio (%)

Transversal
reinforcement ratio (%) Strain rate

Axial
compression

ratio

Fan et al. [34]

JM2-16
Beam 250×400 1125 1.53 0.23 10-5 —
Column 350×350 1300 2.48 0.29 — 0
Joint 350×350 — — 0.45 — 0

JM2-6
Beam 250×400 1125 1.53 0.23 10-5 —
Column 350×350 1300 2.48 0.29 — 0.05
Joint 350×350 — — 0.45 — 0.05

JM2-14
Beam 250×400 1125 1.53 0.23 10-5 —
Column 350×350 1300 2.48 0.29 — 0.1
Joint 350×350 — — 0.45 — 0.1

JM2-3
Beam 250×400 1125 1.53 0.23 10-5 —
Column 350×350 1300 2.48 0.29 — 0.15
Joint 350×350 — — 0.45 — 0.15

JM2-10
Beam 250×400 1125 1.53 0.23 10-5 —
Column 350×350 1300 2.48 0.29 — 0.2
Joint 350×350 — — 0.45 — 0.2

JM2-11
Beam 250×400 1125 1.53 0.23 10-5 —
Column 350×350 1300 2.48 0.29 — 0.25
Joint 350×350 — — 0.45 — 0.25

JM2-15
Beam 250×400 1125 1.53 0.23 10-4 —
Column 350×350 1300 2.48 0.29 — 0.1
Joint 350×350 — — 0.45 — 0.1

JM2-13
Beam 250×400 1125 1.53 0.23 10-4 —
Column 350×350 1300 2.48 0.29 — 0.2
Joint 350×350 — — 0.45 — 0.2

JM2-9
Beam 250×400 1125 1.53 0.23 10-4 —
Column 350×350 1300 2.48 0.29 — 0.25
Joint 350×350 — — 0.45 — 0.25

JM2-18
Beam 250×400 1125 1.53 0.23 10-2 —
Column 350×350 1300 2.48 0.29 — 0
Joint 350×350 — — 0.45 — 0

JM2-7
Beam 250×400 1125 1.53 0.23 10-2 —
Column 350×350 1300 2.48 0.29 — 0.05
Joint 350×350 — — 0.45 — 0.05

JM2-17
Beam 250×400 1125 1.53 0.23 10-2 —
Column 350×350 1300 2.48 0.29 — 0.1
Joint 350×350 — — 0.45 — 0.1

JM2-4
Beam 250×400 1125 1.53 0.23 10-2 —
Column 350×350 1300 2.48 0.29 — 0.15
Joint 350×350 — — 0.45 — 0.15

Fan et al. [34]

JM2-12
Beam 250×400 1125 1.53 0.23 10-2 0.2
Column 350×350 1300 2.48 0.29 — 0.2
Joint 350×350 — — 0.45 — —

JM2-8
Beam 250×400 1125 1.53 0.23 10-2 0.25
Column 350×350 1300 2.48 0.29 — 0.25
Joint 350×350 — — 0.45 — —
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Research team Specimen
Sectional dimension

b×h (mm)
Length
(mm)

Longitudinal
reinforcement ratio (%)

Transversal
reinforcement ratio (%) Strain rate

Axial
compression

ratio

Fan et al. [19]

JD1
Beam 150×300 875 1.37 0.67 10-5 —
Column 250×250 1600 0.98 0.4 — 0.063
Joint 250×250 — — 0.71 — 0.063

JD2
Beam 150×300 875 1.37 0.67 10-5 —
Column 250×250 1600 0.98 0.4 — 0∼0.125
Joint 250×250 — — 0.71 — 0∼0.125

JD3
Beam 150×300 875 1.37 0.67 10-5 —
Column 250×250 1600 0.98 0.4 — 0∼0.188
Joint 250×250 — — 0.71 — 0∼0.188

JD4
Beam 150×300 875 1.37 0.67 10-4 —
Column 250×250 1600 0.98 0.4 — 0.063
Joint 250×250 — — 0.71 — 0.063

JD5
Beam 150×300 875 1.37 0.67 10-4 —
Column 250×250 1600 0.98 0.4 — 0∼0.125
Joint 250×250 — — 0.71 — 0∼0.125

JD6
Beam 150×300 875 1.37 0.67 10-4 —
Column 250×250 1600 0.98 0.4 — 0∼0.188
Joint 250×250 — — 0.71 — 0∼0.188

Jin et al. [35]

BCJ-300-C-i
Beam 225×450 850 0.78 0.67 10-4 —
Column 300×300 1500 1 0.63 — 0.3
Joint 300×300 — — 0 — 0.3

BCJ-300-C-ii
Beam 225×450 850 0.78 0.67 10-4 —
Column 300×300 1500 1 0.63 — 0.3
Joint 300×300 — — 0.84 — 0.3

BCJ-500-C-i
Beam 375×750 1417 0.78 0.67 10-4 —
Column 500×500 2500 1 0.63 — 0.3
Joint 500×500 — — 0 — 0.3

BCJ-500-C-ii
Beam 375×750 1417 0.78 0.67 10-4 —
Column 500×500 2500 1 0.63 — 0.3
Joint 500×500 — — 0.84 — 0.3

BCJ-700-C-i
Beam 525×1050 2170 0.78 0.67 10-4 —
Column 700×700 3500 1 0.63 — 0.3
Joint 700×700 - - 0 - 0.3

Jin et al. [35]

BCJ-700-C-ii
Beam 525×1050 2170 0.78 0.67 10-4 —
Column 700×700 3500 1 0.63 — 0.3
Joint 700×700 — — 0.84 — 0.3

BCJ-900-C-i
Beam 675×1350 2550 0.78 0.67 10-4 —
Column 900×900 4500 1 0.63 — 0.3
Joint 900×900 — — 0 — 0.3

BCJ-900-C-ii
Beam 675×1350 2550 0.78 0.67 10-4 —
Column 900×900 4500 1 0.63 — 0.3
Joint 900×900 — — 0.84 — 0.3

Figure 12: Finite element model of beam–column joint.

3.1 Verification of skeleton curve
A comparison between the calculated and test skeleton curves is presented in Figure 13. The re-
sults indicate that the two curves exhibit essentially the same overall trend, with close agreement
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in both load and displacement at all characteristic points. The average errors corresponding to
the cracking, yielding, peak, and ultimate loads are 7.07%, 5.93%, 4.89%, and 7.76%, respec-
tively, all of which fall within an acceptable range. These results demonstrate that the proposed
restoring force model can effectively capture the load–deformation behavior of beam–column
joints under dynamic loading.

Figure 13: The comparison of calculated skeleton curves with test curves.

3.2 Verification of hysteretic behavior
Comparisons between the calculated and test hysteretic curves are shown in Figure 14. Overall,
good agreement is observed between the two sets of results. The calculated hysteretic curves
accurately predict the shear capacity of the beam–column joint under dynamic loading and
effectively reproduce key hysteretic characteristics, including strength degradation, stiffness

37



Fan et al.

degradation, and pinching behavior. Prior to reaching the peak strength, the calculated load–
displacement responses closely match the test results, indicating that the restoring force model
reliably captures the stiffness characteristics of the ascending branch. After the peak strength
point, however, some calculated curves exhibit relatively larger deviations from the test results.
This discrepancy can be attributed to the adoption of an empirical value of 0.85Pm, derived from
quasi-static tests, as the ultimate load in the skeleton curve, whereas the actual ultimate load
under dynamic loading conditions shows greater variability. Nevertheless, the overall agree-
ment between the calculated and test hysteretic curves remains satisfactory, confirming that the
proposed restoring force model is capable of effectively simulating the hysteretic behavior of
beam–column joints subjected to dynamic loading.

Figure 14: The comparison of calculated hysteretic curves with test curves.
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3.3 Verification of ductility
A comparison of displacement ductility coefficients is presented in Table 3 to evaluate the ca-
pability of the restoring force model in predicting the deformation capacity of the member. To
improve the reliability of the evaluation, the displacement ductility factors are determined us-
ing three different approaches based on the available data: the geometric graphic method, the
equivalent elastic–plastic energy method, and the 0.75Fu method. The average value obtained
from these three methods is taken as the final displacement ductility coefficient. The compari-
son results indicate that the calculated displacement ductility coefficients show good agreement
with the test values for both positive and negative loading directions. The maximum error is
14.29%, while the average error is 7.66%, both of which fall within an acceptable range. These
results demonstrate that the proposed restoring force model is capable of effectively evaluating
the deformation capacity of beam–column joints under dynamic loading.

Table 3: The comparison of calculated displacement ductility coefficients with test values

No. Direction
Geometric graphic Equivalent elastic-plastic energy 0.75Fu Average
Test Calculated Test Calculated Test Calculated Test Calculated |e|%

JM2-10 [34]
Positive 6.25 5.27 4.67 4.3 5.35 5.14 5.42 4.9 9.59%
Negative 6.86 5.63 5.91 4.62 5.79 6 6.19 5.42 12.44%

JM2-12 [34]
Positive 10.7 10.94 9.41 8.4 8.8 8.34 9.64 9.23 4.25%
Negative 7.83 7.24 7.43 7.55 6.93 7.38 7.4 7.39 0.14%

JM2-14 [34]
Positive 7.87 8.17 7.07 5.37 7.21 8.24 7.38 7.26 1.63%
Negative 9.4 7.88 6.97 5.36 6.93 8.19 7.77 7.14 8.10%

JM2-15 [34]
Positive 8.05 8.15 7.75 7.23 7.86 6.53 7.89 7.3 7.48%
Negative 9.25 8.32 7.59 6.31 7.52 6.98 8.12 7.2 11.33%

JM2-18 [34]
Positive 7.58 6.95 7.63 5.94 7.67 6.73 7.63 6.54 14.29%
Negative 6.65 5.68 6.26 4.94 6.21 5.79 6.37 5.47 14.13%

JM2-8 [34]
Positive 8.3 8.67 8.08 7.42 8.43 7.68 8.27 7.92 4.23%
Negative 8.71 7.34 5.38 5.91 5.43 5.45 6.51 6.23 4.30%

3.4 Verification of stiffness degradation
As shown in Figure 15, the stiffness degradation behavior is assessed by comparing the secant
stiffness obtained from the proposed model with the test results. The comparison shows that
the degradation trend of the calculated secant stiffness is in good agreement with that observed
in the tests. Across different displacement amplitudes, the calculated secant stiffness values
remain consistent with the test data. The maximum and average errors are 13.27% and 4.48%,
respectively, both within a permissible range. These results indicate that the proposed restoring
force model can accurately capture the stiffness degradation characteristics of beam–column
joints under cyclic loading.

3.5 Verification of energy dissipation
Figures 16 and 17 present comparisons of the cumulative energy dissipation and the equivalent
viscous damping coefficient, respectively, to assess the model’s ability to predict the energy
dissipation capacity of the member. The calculated cumulative energy dissipation at each dis-
placement amplitude shows close agreement with the test results, although most calculated
values are slightly lower than the test data. The maximum and average errors are 13.17% and
8.80%, respectively, both within an acceptable range. Similarly, the equivalent viscous damp-
ing coefficient obtained from the model exhibits a high level of consistency with the test values,
with maximum and average errors of 13.83% and 8.11%, respectively. As shown in Figure 17,
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the calculated equivalent viscous damping coefficient curve closely follows the test curve dur-
ing the early loading stage, while a modest deviation appears in the later stage. This deviation
is mainly attributed to the fact that the hysteretic behavior in the model is derived from multi-
ple regression analysis, which introduces inherent discrepancies in the hysteretic loop area that
become more pronounced as the displacement amplitude increases. Overall, the energy dissi-
pation parameters predicted by the proposed restoring force model show good agreement with
the test results, demonstrating that the model can effectively evaluate the energy dissipation
capacity of beam–column joints under dynamic loading.

Figure 15: The comparison of calculated secant stiffness with test values.
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Figure 16: The comparison of calculated cumulative energy dissipation with test values.

4 Research on dynamic performance
Following the design guidelines for database No. 88–101 in [34], eight beam–column joint
specimens were prepared with identical cross-sectional dimensions, longitudinal reinforcement,
and stirrup configurations. The concrete exhibited an average 28-day cube compressive strength
of 33.21 MPa. The longitudinal reinforcement was HRB335, and the stirrups were HPB300.
Detailed geometric and reinforcement parameters of the specimens are shown in Figure 18.

According to the loading protocol specified for database No. 88–101 in [34], displacement-
controlled loading was applied at the beam end, while the column end was subjected to either
fixed or varying axial force. The maximum axial compression ratio was set to 0.5, and the cor-
responding loading schemes are summarized in Table 4. Under varying axial force conditions,
the axial force increased with the beam-end displacement within each loading cycle. When the
beam-end displacement reached the target amplitude, the column end maintained the maximum
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axial force until the beam returned to its initial position, after which the axial force was re-
duced to zero, completing one loading cycle. This axial force variation pattern was repeated in
subsequent cycles, as illustrated in Figure 19(a).

Figure 17: The comparison of calculated equivalent viscous damping coefficient with test val-
ues.

Based on the finite element modeling approach described in section 4, a numerical model
of the beam–column joint was established according to the specimen design and loading proto-
col. The model was employed to simulate the mechanical response of the joint under complex
dynamic loading conditions involving coupled variations in strain rates and axial forces.
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Figure 18: Beam–column joint design details

Figure 19: Load protocol

Table 4: Loading scheme of beam–column joints

No. Load speed (mm/s) Elastic strain rate Plastic strain rate Axial force loading scheme Axial compression ratio
RFM-1 0.4 10−4 10−5 Fixed axial force 0.5
RFM-2 0.4 10−4 10−5 Varying axial force 0 ∼ 0.5
RFM-3 4 10−3 10−4 Fixed axial force 0.5
RFM-4 4 10−3 10−4 Varying axial force 0 ∼ 0.5
RFM-5 40 10−2 10−3 Fixed axial force 0.5
RFM-6 40 10−2 10−3 Varying axial force 0 ∼ 0.5
RFM-7 400 10−1 10−2 Fixed axial force 0.5
RFM-8 400 10−1 10−2 Varying axial force 0 ∼ 0.5

4.1 Hysteretic curve
The simulated hysteretic curves are presented in Figure 20. The results indicate that the overall
shapes of the hysteretic curves obtained under varying axial force are very similar to those under
fixed axial force, demonstrating good consistency between the two loading conditions. Under
coupled varying strain rates and axial forces, the evolution of the hysteretic response of the
beam–column joint can be summarized as follows. (1) In the initial loading stage, the hysteretic
curve exhibits a nearly linear response, with the unloading stiffness close to the initial elastic

43



Fan et al.

stiffness. At this stage, the influence of varying strain rates and axial forces is negligible. (2)
With increasing load, pinching behavior begins to appear in the hysteretic curve, and residual
deformation gradually becomes evident. (3) As loading continues, the residual deformation
of the hysteretic loops increases, accompanied by a more pronounced degradation of stiffness.
(4) When the member reaches the peak load, two hysteretic loops are observed at the same
displacement amplitude. The peak load of the second loop is lower than that of the first, and
a descending branch emerges, indicating significant strength degradation. (5) Beyond the peak
load, both strength and stiffness degradation become more severe, and the pinching effect is
further intensified.

Figure 20: Hysteretic curves.

4.2 Skeleton curve
As shown in Figure 21, the skeleton curves are extracted from the hysteretic curves of the
beam–column joint using the envelope method. Under varying axial force, the average positive
and negative ultimate carrying capacities are slightly higher than those under the fixed axial
force, with a maximum increase of 4.35%. Although the load in the descending branch exhibits
merely a slight increase, the overall shape of the skeleton curves remains consistent under both
conditions. Furthermore, both the yield and ultimate carrying capacities of the beam–column
joint are notably enhanced at higher strain rates. The improvement in ultimate carrying capacity
is more substantial than that in yield carrying capacity, reaching a maximum of approximately
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25.77%. Concurrently, the descending branch becomes steeper, indicating that stiffness degra-
dation intensifies with increasing strain rate.

Figure 21: Skeleton curves.

4.3 Displacement ductility coefficient
The displacement ductility coefficient µ∆ is employed to analyze the deformation capacity of
beam–column joints under varying strain rates and axial forces. The formula is expressed as:

µ∆ =
∆u

∆y
. (50)

The data are processed in accordance with the method in Section 4.3, and the results are
shown in Table 5. At lower strain rate (ε̇ ≤ 10−4 s−1), the displacement ductility coefficient
under varying axial force decreases by up to 22.3% compared with that under fixed axial force.
However, at higher strain rate (ε̇ > 10−4 s−1), the displacement ductility coefficient under vary-
ing axial force shows only minor variation, with a maximum reduction of 6.58%. This indicates
that varying axial force generally leads to a reduction in the displacement ductility coefficient.
However, the rate of degradation decreases rapidly with increasing strain rate, causing the dis-
placement ductility coefficient under varying axial force to gradually approach that under fixed
axial force. Therefore, the influence of varying axial force on member ductility becomes rela-
tively minor at higher strain rates (ε̇ > 10−4 s−1).

In addition, increasing strain rate results in a pronounced reduction in the displacement
ductility coefficient of the beam–column joint, with a maximum decrease of 26.21%. This
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finding confirms that the deformation capacity of the beam–column joint deteriorates as the
strain rate increases.

Table 5: Displacement ductility coefficients.

No. Direction Geometric graphic Equivalent elastic–plastic energy 0.75Fu Average Grand mean

RFM-1
Positive 4.67 4.02 3.80 4.16

4.35
Negative 4.62 4.42 4.57 4.54

RFM-2
Positive 3.55 3.15 3.06 3.25

3.38
Negative 3.57 3.40 3.54 3.50

RFM-3
Positive 5.12 4.46 3.89 4.49

5.15
Negative 5.90 5.90 5.63 5.81

RFM-4
Positive 5.71 4.51 4.01 4.74

5.01
Negative 5.27 5.22 5.22 5.24

RFM-5
Positive 5.67 4.58 4.26 4.84

4.02
Negative 3.14 3.23 3.20 3.19

RFM-6
Positive 4.85 4.37 4.18 4.47

3.88
Negative 3.25 3.29 3.29 3.28

RFM-7
Positive 5.29 4.28 3.97 4.51

3.80
Negative 3.02 3.15 3.09 3.09

RFM-8
Positive 4.45 3.99 3.81 4.08

3.55
Negative 2.97 3.05 3.03 3.02

4.4 Stiffness degradation
Stiffness degradation, which reflects the accumulation of damage under cyclic loading, is eval-
uated for the beam–column joint under varying strain rates and axial forces using the secant
stiffness. The secant stiffness is defined as:

Ki =

∣∣F+
i

∣∣+ ∣∣F−
i

∣∣∣∣∆+
i

∣∣+ ∣∣∆−
i

∣∣ , (51)

where F+
i and F−

i are the positive and negative peak loads at the i-th displacement amplitude,
while ∆

+
i and ∆

−
i are the corresponding positive and negative peak displacements.

The secant stiffness curves are shown in Figure 22. At lower strain rates (ε̇ ≤ 10−3 s−1), the
secant stiffness curves under varying and fixed axial force are nearly identical. At higher strain
rates (ε̇ > 10−3 s−1) and lower displacement amplitude (∆/∆u < 3), the secant stiffness under
varying axial force is slightly higher than under fixed axial force, with a maximum increase
of 8.28%. As the displacement amplitude increases, the secant stiffness gradually converges
to that obtained under fixed axial force, indicating that the influence of varying axial force
on stiffness degradation is limited. In contrast, the effect of strain rate on stiffness is more
pronounced. With increasing strain rate, the secant stiffness of the beam–column joint increases
over the entire range of displacement amplitudes, with a maximum increase of 22.9%. This
result indicates that higher strain rates generally enhance the stiffness of the member. However,
at larger displacement amplitudes, stiffness degradation becomes increasingly significant as the
strain rate rises.
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Figure 22: Secant stiffness

4.5 Energy dissipation
Cumulative energy dissipation and the equivalent viscous damping coefficient are commonly
used to evaluate the energy dissipation capacity of beam–column joints. Cumulative energy
dissipation is obtained by summing the areas enclosed by the hysteretic loops and reflects the
energy dissipation capacity of the member under cyclic loading, as shown in Figure 23. Under
varying axial force, the cumulative energy dissipation of the beam–column joint is slightly lower
than that under fixed axial force across different displacement amplitudes, with a maximum
reduction not exceeding 11.09%. The overall shapes of the curves corresponding to the two
loading conditions remain highly similar. Furthermore, when the strain rate is below 10−3 s−1,
the cumulative energy dissipation at higher strain rates exceeds that at lower strain rates, with
a maximum increase of 33.34%. When the strain rate exceeds 10−3 s−1, the opposite trend
emerges. This indicates that the cumulative energy dissipation increases with the strain rate
within a specific range (ε̇ = 10−5 s−1 ∼ 10−3 s−1).

The equivalent viscous damping coefficient heq quantifies the energy dissipation efficiency
associated with the shape of the hysteretic loop. To comprehensively evaluate the energy dissi-
pation capacity of beam–column joints under varying strain rates and axial forces, heq is com-
bined with the cumulative energy dissipation. The relevant formulations and corresponding
curves are shown in Figures 24 and 25, respectively. When subjected to varying axial force, heq
exhibits a slight decrease across all displacement amplitudes compared to the fixed axial force,
with reduction ranging from 1.91% to 12.5%. Meanwhile, the curves corresponding to the two
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axial force conditions display a high degree of similarity. Combined with the cumulative energy
dissipation results discussed above, this indicates that varying axial force has a limited influence
on the overall energy dissipation capacity. As the strain rate increases, heq rises at all displace-
ment amplitudes, with a maximum increase of 22.73%. The simultaneous enhancement of both
cumulative energy dissipation and equivalent viscous damping coefficient demonstrates that the
beam–column joint dissipates more energy at higher strain rates.

Figure 23: Cumulative energy dissipation.

Figure 24: Schematic diagram of equivalent viscous damping coefficient.
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Figure 25: Equivalent viscous damping coefficient.

5 Conclusion
This study proposes an asymmetric rate-dependent restoring force model for beam-column joint
subjected to varying strain rates and axial forces. The model is used to investigate the dynamic
performance of beam-column joint. The main conclusions are as follows:

(1) Based on the characteristics of the complete force-deformation behavior of beam-column
joint, a quadrilinear skeleton curve is developed, which is defined by four key points corre-
sponding to cracking, yielding, peak strength, and ultimate strength. By combining parametric
analysis with the mean value theorem, explicit expressions for these characteristic points are
obtained via strip integration, accounting for the effects of variable strain rates and axial forces.
The resulting formulations accurately predict the load–displacement response of beam-column
joint under complex dynamic loading characterized by coupled variations in strain rate and axial
force.

(2) Based on the proposed skeleton curve and hysteretic rules, an asymmetric rate-dependent
restoring force model for beam-column joint under varying strain rates and axial forces is for-
mulated. This model is implemented in a finite element framework to simulate the joint’s dy-
namic performance. The results show good agreement with test data, confirming the model’s
effectiveness in analyzing the dynamic performance of the beam-column joint under complex
dynamic loading.

(3) At higher strain rate, both the yield and ultimate carrying capacities of the beam-column
joint increase, with the ultimate carrying capacity exhibiting a greater improvement. Addi-
tionally, the increased strain rate enhances both the stiffness and energy dissipation capacity.
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However, these improvements are accompanied by a reduction in ductility.
(4) Under varying axial force, the hysteretic and skeleton curves of the beam-column joint

closely resemble those obtained under fixed axial force. Although a slight reduction in ductil-
ity is observed, the stiffness and energy dissipation capacity remain comparable between the
two loading conditions. Given these minor differences, the influence of varying axial force
on dynamic performance is negligible compared to that of varying strain rate. Therefore, the
distinction between varying and fixed axial force loading is practically insignificant.

Acknowledgments
This work was supported by National Natural Science Foundation of China (Grant No. 52008385),
Natural Science Foundation of Shandong Province (Grant No. ZR2018BEE041), Research Sub-
ject Supported by Enterprise and Institution (20250301). The authors would like to express their
gratitude for the support.

Conflict of interest
The authors declare no conflict of interest.

References
[1] Seyfpour, M., Sadeghirad, A., & Epackachi, S. (2025, December). Effects of dynamic

loading on response of reinforced concrete components using machine learning. In Struc-
tures (Vol. 82, p. 110761). Elsevier.

[2] Jin, L., Wu, S., Zhang, R., Li, J., & Du, X. (2026). Impact velocity and mass effects on the
impact force of geometrically scaled reinforced concrete beams: Simulation, mechanisms,
and prediction. Journal of Building Engineering, 117.

[3] Mofid, T., & Tavakoli, H. R. (2020). Experimental investigation of post-earthquake behav-
ior of RC beams. Journal of Building Engineering, 32, 101673.

[4] Jin, L., Lei, Y., Yu, W., & Du, X. (2021). Dynamic shear failure and size effect in BFRP-
reinforced concrete deep beam. Engineering Structures, 245, 112951.

[5] Xiao, S. Y., Li, J. B., & Mo, Y. L. (2020). Dynamic behaviours of reinforced concrete
columns under cyclic loading with variable rates. Advances in Structural Engineering,
23(4), 779-793.

[6] Jin, L., Zhang, B., Chen, F., Yu, W., Lei, Y., Miao, L., & Du, X. (2022). Numerical in-
vestigations on the strain-rate-dependent mechanical behavior and size effect of RC shear
walls. International Journal of Impact Engineering, 167, 104279.

[7] Jaiswal, D. K., & Murty, C. V. R. (2025). Axial–flexure–shear strength interaction of solid
and hollow reinforced concrete rectangular members. Structural Concrete, 26(4), 5125-
5151.

50



INGEGNERIA SISMICA – INTERNATIONAL JOURNAL OF EARTHQUAKE ENGINEERING

[8] Gundogan, S., Demir, U., Turan, O. T., & Ilki, A. (2025, July). Impact of high axial stress
on seismic behavior of substandard reinforced concrete columns. In Structures (Vol. 77,
p. 109117). Elsevier.

[9] Luo, W., Jiang, L., Lei, C., Wang, L., Tian, Y., Yang, S., & Zhang, W. (2023). Effects of
axial restraints on beam flexural and joint shear behaviors in reinforced concrete frames
under seismic loading. Journal of Earthquake Engineering, 27(1), 121-141.

[10] Cao, Y., & Yang, Z. (2022). Seismic damage evaluation of beam-column joints in mono-
lithic precast concrete frame structures. Materials, 15(17), 6038.

[11] Su, X., Yang, H., Liu, Q., Wang, X., & Fu, J. (2024). Experimental study on seismic
behavior of reinforced concrete exterior beam-column joints under varying axial load.
Engineering Structures, 318, 118682.

[12] Mou, B., Pan, Y., Wu, C., & Yu, Y. (2024). Restoring force model for steel beam to
CFST/HSS column joints with a reinforced concrete slab. Journal of Building Engineer-
ing, 82, 108378.

[13] Li, Y., Zhang, C., & Yin, S. (2025, December). Restoring force model for earthquake-
damaged RC columns strengthened with textile reinforced concrete (TRC) jackets. In
Structures (Vol. 82, p. 110456). Elsevier.

[14] Li, Y., Fan, M., Song, H., Wu, C., An, Q., Wang, X., & Ren, J. (2024). Restoring force
model of a modular steel-concrete composite column. Case Studies in Construction Ma-
terials, 20, e03128.

[15] Zuo, Y., Xu, Z., Chen, Z., & Dai, S. (2021). Restoring-force model for HFC-filled CFS
shear walls subjected to in-plane cyclic loading. Journal of Building Engineering, 44,
103347.

[16] Yu, J., Xia, Y., Guan, D., & Guo, X. (2024). Seismic behavior and restoring force model
of precast beam-column connections with locally reactive powder concrete. Journal of
Building Engineering, 82, 108296.

[17] Yu, Z., Li, Y., Zhang, J., Yuan, H., Wei, X., & Du, G. (2024, May). Research on seismic
performance and restoring force model for square UHPC-filled high-strength steel tube
column with end ribs. In Structures (Vol. 63, p. 106403). Elsevier.

[18] Yu, J., Xia, Y., Guo, Z., & Guo, X. (2024). Experimental study on the structural behavior
of exterior precast concrete beam-column joints with high-strength steel bars in field-cast
RPC. Engineering Structures, 299, 117128.

[19] Fan, G., Xiang, W., Wang, D., Dou, Z., & Tang, X. (2024). Study on seismic performance
of exterior reinforced concrete beam-column joint under variable loading speeds or axial
forces. Earthquakes and Structures, 26(1), 31-48.

[20] Pang, X., & Li, Y. (2024). Seismic performance evaluation of precast post-tensioned high-
performance concrete frame beam-column joint under cyclic loading. Scientific Reports,
14(1), 12327.

51



Fan et al.

[21] Xue, W., Hu, X., Dai, L., & Zhu, B. (2022). Cyclic behavior of semi-rigid precast concrete
beam-to-column subassemblages with rapid assembly connections. Journal of Building
Engineering, 46, 103671.

[22] Zhuang, M. L., Sun, C., Bai, L., Gao, L., Qiao, Y., Zhang, W., ... & Zhao, Q. (2023). A
restoring force model for a novel type of precast beam-to-column joints using mechanical
connections.Case Studies in Construction Materials, 18, e01840.

[23] Bilgin, H., & Plaku, B. (2024). Influence of confined concrete models on the seismic
response of rc frames. Structural Durability & Health Monitoring, 18(3), 1-26.

[24] da Silva Junior, I. B., de Alencar Monteiro, V. M., Patel, D. D., Gaspar, C. M. R.,
Mobasher, B., & de Andrade Silva, F. (2025). Generalized Nonlinear Moment–Curvature
model for flexural fatigue of hybrid reinforced concrete beams. Engineering Structures,
345, 121539.

[25] Kenari, M. A., Abdollahzadeh, G., & Hashemi, S. K. (2025). Experimental and numerical
post-fire seismic performance assessment of recycled aggregate concrete beam-column
joints. Construction and Building Materials, 505, 144617.

[26] Zhang, Z. W., Bai, G. L., Luo, F. J., Ren, L. P., Tian, Y., & Li, S. F. (2024, April). Seismic
behavior test and plastic hinge theory for HRB500 prefabricated steel reinforcement cage-
cast-in-situ concrete columns. In Structures (Vol. 62, p. 106213). Elsevier.

[27] Jafari, A., Mirrashid, M., Hoult, R. D., & Zhou, Y. (2025). Plastic hinge length of RC
shear walls: Practical approximation via machine learning and probabilistic assessment.
Engineering Failure Analysis, 169, 109179.

[28] Yuan, W., Jia, Z., Hu, M., Liao, W., Han, Q., & Bi, K. (2025). Seismic performance of RC
columns with ECC in the potential plastic hinge region. Journal of Building Engineering,
113520.

[29] Jin, L., Wan, S., Li, D., & Du, X. (2022). Size effect and strain rate effect on seismic
behavior of reinforced concrete beam-column joints. Structural Concrete, 23(3), 1453-
1468.

[30] Lai, D., Nocera, F., Demartino, C., Xiao, Y., & Gardoni, P. (2024). Probabilistic models
of dynamic increase factor (DIF) for reinforced concrete structures: A Bayesian approach.
Structural Safety, 108, 102430.

[31] Liu, W., Ma, Y., & Jia, J. (2022). Effect of Fast Loading on the Seismic Performance of
SRUHSC Frame Structures. Buildings, 12(6), 736.

[32] Ma, Y., Li, J., Wang, D., Mi, J., & Dai, K. (2025). Probabilistic prediction of hysteretic
curves of corroded reinforced concrete columns based on Bayesian theory. Soil Dynamics
and Earthquake Engineering, 193, 109308.

[33] Kaboodkhani, M., & Hamidia, M. (2025). Machine learning–based prediction of Park
& Ang mechanistic seismic damage index for reinforced concrete beam–column joints.
Journal of Building Engineering, 106, 112528.

52



INGEGNERIA SISMICA – INTERNATIONAL JOURNAL OF EARTHQUAKE ENGINEERING

[34] Harith, I. K., Nadir, W., Salah, M. S., Mohammed, A. Y., & Hussien, M. L. (2025). Ma-
chine learning-based prediction of shear strength in interior beam-column joints. Discover
Applied Sciences, 7(5), 469.

[35] Chen, Q., Yu, Z., & Li, B. (2025, March). Image-assisted seismic damage evaluation
for reinforced concrete interior beam-column joints. In Structures (Vol. 73, p. 108349).
Elsevier.

53


	Introduction
	Establishment of restoring force model
	Characteristics of beam-column joint
	Characteristics of skeleton curve
	Theoretical calculation method of skeleton curve
	Calculation method for characteristic point load

	Calculation method for characteristic point displacement
	Influence of varying strain rate on the restoring force model
	Influence of varying axial force on the restoring force model
	Influence of asymmetry on the restoring force model
	Establishment of hysteretic rule
	Unloading stiffness
	Reloading stiffness
	Damage index
	Hysteretic rule


	Validation of restoring force model
	Verification of skeleton curve
	Verification of hysteretic behavior
	Verification of ductility
	Verification of stiffness degradation
	Verification of energy dissipation

	Research on dynamic performance
	Hysteretic curve
	Skeleton curve
	Displacement ductility coefficient
	Stiffness degradation
	Energy dissipation

	Conclusion

