Outline

Ingegneria Sismica

Ingegneria Sismica

SHAPE OPTIMIZATION OF BUTTERFLY-SHAPED SHEAR LINKS USING GREY WOLF ALGORITHM

Author(s): Alireza Farzampour 1, Mohsen Khatibinia 2, Iman Mansouri 3
1Department of Civil and Environmental Engineering, Virginia Tech, United States
2Department of Civil Engineering, University of Birjand, Birjand, Iran
3Department of Civil Engineering, Birjand University of Technology, P.O. Box 97175-569, Birjand, Iran
, Alireza Farzampour., , Mohsen Khatibinia., and , Iman Mansouri. “SHAPE OPTIMIZATION OF BUTTERFLY-SHAPED SHEAR LINKS USING GREY WOLF ALGORITHM.” Ingegneria Sismica Volume 36 Issue 1: 27-40, doi:….

Abstract

The shear loading applied to structures is resisted by implementation of hysteric dampers as structural seismic force resisting system. Recently, steel plates with engineered cut-outs are introduced to have controlled yielding. These structural elements behave as shear links are able to post pone brittle limit states, leading to resistance against early fracture. Among which, a promising type of link is butterfly-shaped link, for which the demand moment diagram aligns with capacity moment diagram to efficiently implement the steel. Previous studies show that these elements are used as appropriate choice for structural seismic fuse system since they are able to experience large drifts with sufficient ductility and full hysteric behavior. Therefore, the appropriate geometrical properties for these links are in need of further investigations. In this study, the finite element methodology is initially validated with experimental test. Then optimization criteria is introduced for set of 300 models to investigate the desired geometrical properties for having most energy dissipation with less fracture potential. This paper represents optimization process with which the geometrical properties of butterfly shaped link is improved to have sufficient energy dissipation performance and less potential for fracture. The pushover curves and equivalent plastic strains are obtained from ABAQUS through an iterative process. The Grey Wolf Optimizer method is adopted for optimization methodology due to having strong capability in non-linear system. It can be found that by implementation of optimization methodology the links are designed to have a mode switch from flexural yielding limit state to shear yielding and are able to dissipate energy over a less equivalent plastic strain value.

Keywords
Structural Seismic fuses, Grey wolf optimization, Butterfly-shaped links, Finite element, Plastic strain

Related Articles

E. Brunesi1, S. Peloso1, R. Pinho1,2, R. Nascimbene3
1EUCENTRE, European Centre for Training and Research in Earthquake Engineering Via Ferrata 1, 27100 Pavia, Italy
2Dept. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy
3Scuola Universitaria Superiore IUSS Pavia Piazza della Vittoria 15, 27100 Pavia, Italy
R. Arvind1, M. Helen Santhi1, G. Malathi2, Huseyin Bilgin3
1School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Civil (Structural) Engineering, Epoka University, Tirana / Albania
Ali Ekber Sever1, Yakup Hakan Aydin2, Pinar Usta Evci1
1Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
2Department of Mechanical Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
Hayri Baytan Ozmen1, Esra Ozer2
1Department of Civil Engineering, Usak University, 64200 Usak, Turkey
2Department of Civil Engineering, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey
Hamid Beiraghi1, Abolfazl Riahi Nouri2
1Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
2Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran