Outline

Ingegneria Sismica

Ingegneria Sismica

Evaluation of rbs effective parameters on the seismic performance of steel beam-column connections

Author(s): Hojatallah Azarkhosh 1, Wu Erjun, Ebahim Farajpourbonab
1Hohai University
Azarkhosh , Hojatallah ., Erjun, Wu ., and Farajpourbonab, Ebahim . “Evaluation of rbs effective parameters on the seismic performance of steel beam-column connections.” Ingegneria Sismica Volume 39 Issue 4: 1-15, doi:….

Abstract

In this research, RBS effective parameters, on the seismic performance of beam-column connections have been investigated. In this study, finite element modelling analyses has been verified with a valid experimental specimen and the results are in good agreement. Ten models were numerically investigated. The investigated parameters are the various No. of IPB sections such as IPB120, IPB160, IPB200, and IPB240, changes in RBS beam cutting length (parameter b), changes in RBS beam cutting depth (parameter c), and changes in RBS beam cutting radius (parameter R). According to the numerical analysis, the moment-rotation curve, as well as the shape and stress distribution of the connection components, are examined for 10 different models. The results show that when the beam reaches the plastic moment area, the moment- rotation curve of the connection location is located in the elastic region. By decreasing the radius of the beam, the strength decreases and the energy dissipation decreases. Further, the results show that increasing parameter b (length of beam cutting), the strength and energy absorption capacity of the beam-column connection slightly decreases which is negligible. Therefore, with increasing parameter b, neither the RBS cutting depth, nor the RBS cutting radius has negative impact and it makes the initiative in executive and operational work to be higher and the executive restrictions to be less. The analysis of the distribution of von Mises stresses indicates the high ability of the beam to be connected with the reduced cross-section in the placement of the plastic joint tends in the reduced area of the beam flange in the area away from the connection.

Related Articles

E. Brunesi1, S. Peloso1, R. Pinho1,2, R. Nascimbene3
1EUCENTRE, European Centre for Training and Research in Earthquake Engineering Via Ferrata 1, 27100 Pavia, Italy
2Dept. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy
3Scuola Universitaria Superiore IUSS Pavia Piazza della Vittoria 15, 27100 Pavia, Italy
R. Arvind1, M. Helen Santhi1, G. Malathi2, Huseyin Bilgin3
1School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Civil (Structural) Engineering, Epoka University, Tirana / Albania
Ali Ekber Sever1, Yakup Hakan Aydin2, Pinar Usta Evci1
1Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
2Department of Mechanical Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
Hayri Baytan Ozmen1, Esra Ozer2
1Department of Civil Engineering, Usak University, 64200 Usak, Turkey
2Department of Civil Engineering, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey
Hamid Beiraghi1, Abolfazl Riahi Nouri2
1Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
2Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran