Outline

Ingegneria Sismica

Ingegneria Sismica

COLLAPSE RESISTANCE ASSESSMENT OF BUCKLING-RESTRAINED BRACED STEEL FRAMES USING COMBINED DETERMINISTIC AND PROBABILITY ANALYSIS APPROACH

Author(s): Mingming Jia 1, Shan Gao 2, Dagang Lu 1, Feng Fu 3, Hui Zhang 1
1Key Lab of Structure Dynamic Behavior and Control of China Ministry of Education, Harbin Institute of Technology, Harbin,China
2Shaanxi Key Laboratory of safety and durability of concrete structures, Xijing University, Xi’an, China
3School of Mathematics, Computer Science and Engineering, City, University of London, London, UK
, Mingming Jia. et al “COLLAPSE RESISTANCE ASSESSMENT OF BUCKLING-RESTRAINED BRACED STEEL FRAMES USING COMBINED DETERMINISTIC AND PROBABILITY ANALYSIS APPROACH.” Ingegneria Sismica Volume 36 Issue 3: 67-94, doi:….

Abstract

The load bearing capacity, global ductility and overall stability of steel frame can be improved significantly through the use of buckling-restrained braces (BRBs). Based on the open resource platform OpenSees, finite element models of two types of steel frame buildings, one is nine story steel frame (SF) building and another is buckling-restrained braced steel frames (BRBFs) buildings are developed. The structures were analyzed using both deterministic and probability analysis approach. No component-removal random incremental dynamic analysis (IDA) and component-removal random IDA are used to analyze collapse resistance of the buildings under seismic load. The collapse modes of SF and BRBFs under earthquakes are discovered. The nonlinear dynamic responses of SF and BRBFs are analyzed before and after the removal of certain critical components using the alternative path method (APM) approach stipulated by GSA and vertical IDA method respectively. Correspondently, the probabilistic fragility function of collapse likelihood of SF and BRBFs are also derived based on random vertical incremental dynamics analysis approach. The analytical results show that the use of buckling-restrained braces ensures alternative load path, therefore changes the failure modes and improve collapse resistance of structures.

Keywords
eccentrically braced steel frame; collapse resisting capacity; failure modes; alternative path method; fragility

Related Articles

E. Brunesi1, S. Peloso1, R. Pinho1,2, R. Nascimbene3
1EUCENTRE, European Centre for Training and Research in Earthquake Engineering Via Ferrata 1, 27100 Pavia, Italy
2Dept. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy
3Scuola Universitaria Superiore IUSS Pavia Piazza della Vittoria 15, 27100 Pavia, Italy
R. Arvind1, M. Helen Santhi1, G. Malathi2, Huseyin Bilgin3
1School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Civil (Structural) Engineering, Epoka University, Tirana / Albania
Ali Ekber Sever1, Yakup Hakan Aydin2, Pinar Usta Evci1
1Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
2Department of Mechanical Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
Hayri Baytan Ozmen1, Esra Ozer2
1Department of Civil Engineering, Usak University, 64200 Usak, Turkey
2Department of Civil Engineering, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey
Hamid Beiraghi1, Abolfazl Riahi Nouri2
1Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
2Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran