Outline

Ingegneria Sismica

Ingegneria Sismica

NUMERICAL FRAMEWORK FOR NONLINEAR ANALYSIS OF TWO-DIMENSIONAL LIGHT-FRAME WOOD STRUCTURES

, Ioannis P. Christovasilis. and , Andre Filiatrault. “NUMERICAL FRAMEWORK FOR NONLINEAR ANALYSIS OF TWO-DIMENSIONAL LIGHT-FRAME WOOD STRUCTURES.” Ingegneria Sismica Volume 31 Issue 4: -, doi:….

Abstract

This paper presents and assesses a new numerical framework for the nonlinear, inelastic analysis of two-dimensional (2D) vertical wood building systems that incorporate sheathed light-frame wood shear walls as seismic force-resisting system. The 2D building model is based on a sub-structuring approach that considers each floor diaphragm as a rigid body with three kinematic degrees-of-freedom (DOF). Each inter-storey shear wall assembly, including the floor diaphragms above and below, can then be simulated by a six-DOF sub-structure element with internal nonlinear DOF. The shear wall element takes into account deformations in the framing members, contact/ separation phenomena between framing members and diaphragms, anchoring equipment such as anchor bolts and hold-downs and all sheathing-to-framing connections. Corotational descriptions are used to solve for displacement fields that satisfy the equilibrium equations in the deformed configuration, accounting for geometric nonlinearity and P-Δ effects. To appraise the proposed numerical framework, the predictions of the numerical model are compared to experimental results from single and two-storey full-scale shear wall specimens. These examples demonstrate the capability of the numerical framework to simulate accurate load paths in the shear wall assemblies and successfully predict variations in strength, stiffness and energy dissipation characteristics of the seismic force-resisting system.

Related Articles

E. Brunesi1, S. Peloso1, R. Pinho1,2, R. Nascimbene3
1EUCENTRE, European Centre for Training and Research in Earthquake Engineering Via Ferrata 1, 27100 Pavia, Italy
2Dept. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy
3Scuola Universitaria Superiore IUSS Pavia Piazza della Vittoria 15, 27100 Pavia, Italy
R. Arvind1, M. Helen Santhi1, G. Malathi2, Huseyin Bilgin3
1School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Civil (Structural) Engineering, Epoka University, Tirana / Albania
Ali Ekber Sever1, Yakup Hakan Aydin2, Pinar Usta Evci1
1Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
2Department of Mechanical Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
Hayri Baytan Ozmen1, Esra Ozer2
1Department of Civil Engineering, Usak University, 64200 Usak, Turkey
2Department of Civil Engineering, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey
Hamid Beiraghi1, Abolfazl Riahi Nouri2
1Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
2Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran