Outline

Ingegneria Sismica

Ingegneria Sismica

Base Isolated Building with Hybrid Base Isolation System (HDRB & FS in parallel): Linear vs. Nonlinear Dynamic Analysis

, Donato Cancellara. and , Mario Pasquino. “Base Isolated Building with Hybrid Base Isolation System (HDRB & FS in parallel): Linear vs. Nonlinear Dynamic Analysis.” Ingegneria Sismica Volume 28 Issue 3: -, doi:….

Abstract

In this work, the base isolation system for a multi-storey reinforced concrete building, highly irregular in plan, has been considered. The hybrid base isolation system consists in High Damping Rubber Bearings (HDRB) in parallel with Friction Sliders (FS) with low coefficient of friction at the interface steel-PTFE. In particular the HDN.E 500 and AlgaPot PNm devices are adopted. The seismic analysis has been performed with all possible linear and nonlinear dynamic analysis according to Eu- ropean seismic code (EC8) and according to the new Italian seismic code (NTC 2008). The results of the seismic analysis have been compared closely, in terms of stresses on the main elements of the superstructure (bending mo- ment and shear force for the beams; biaxial bending moment, the axial and shear force for columns) and in terms of deformation of the superstructure (interstorey drift). In this work, has been evaluated the influence of the accidental eccentricity in the non linear dynamic analysis in order to account for uncertainties in the location of masses and in the spatial variation of the seismic motion. Con- sidering the accidental eccentricity in a nonlinear dynamic analysis, the number of tests to be performed increases substantially, so it is important to understand how the accidental eccentricity influences the seismic response of base-isolated structure.

Related Articles

E. Brunesi1, S. Peloso1, R. Pinho1,2, R. Nascimbene3
1EUCENTRE, European Centre for Training and Research in Earthquake Engineering Via Ferrata 1, 27100 Pavia, Italy
2Dept. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy
3Scuola Universitaria Superiore IUSS Pavia Piazza della Vittoria 15, 27100 Pavia, Italy
R. Arvind1, M. Helen Santhi1, G. Malathi2, Huseyin Bilgin3
1School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
3Civil (Structural) Engineering, Epoka University, Tirana / Albania
Ali Ekber Sever1, Yakup Hakan Aydin2, Pinar Usta Evci1
1Department of Civil Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
2Department of Mechanical Engineering, Isparta University of Applied Sciences, 32260 Isparta, Turkey
Hayri Baytan Ozmen1, Esra Ozer2
1Department of Civil Engineering, Usak University, 64200 Usak, Turkey
2Department of Civil Engineering, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey
Hamid Beiraghi1, Abolfazl Riahi Nouri2
1Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran
2Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran